Bacterial dioxygenase-catalysed dihydroxylation and chemical resolution routes to enantiopure cis-dihydrodiols of chrysene

D erek R. B oyd, ${ }^{\text {a }}$ N arain D. Sharma, ${ }^{\text {a } R ~ a j i v ~ A ~ g a r w a l, ~}{ }^{\text {a }}$ Sol M . Resnick, ${ }^{\text {b }}$
 D onald M. J erina ${ }^{\text {d }}$
a School of Chemistry, The Queen's University of Belfast, Belfast BT9 5AG, UK
${ }^{\mathrm{b}}$ The D epartment of M icrobiology and C enter for Biocatalysis and Bioprocessing, The U niversity of Iowa, Iowa, 52242-1109, USA
${ }^{\text {c }}$ S pringborn L aboratories Inc., W areham, M assachusetts 02571, USA
${ }^{d}$ L aboratory of Bioorganic Chemistry, NIDDK, The N ational Institutes of H ealth, B ethesda, M d 20892, U SA

Biotransformation of the environmental pollutant chrysene 1 by resting cells of a mutant strain (B8/36) of the soil bacterium S phingomonas yanoikuyae produces (+)-cis-3,4-dihydroxy-3,4-dihydrochrysene 4 which has been assigned ($35,4 \mathrm{R}$) absolute configuration by stereochemical correlation with (-)-($35,4 \mathrm{R}$)-cis-3,4-dihydroxy-1,2,3,4-tetrahydrochrysene 6 . Both cis-3,4-diol 6 and cis-1,2-dihydroxy-1,2,3,4tetrahydrochrysene 12 are obtained in enantiopure form after chromatographic separation of the individual bis(2-methoxy-2-phenyl-2-trifluoromethylacetyl) (bis-M TPA) diastereoisomers of compound 6 and the M TPA diastereoisomers of bromohydrin 19, respectively, followed by hydrolysis. A new general synthetic route to cis-dihydrodiols, from the corresponding cis-tetrahydrodiol cyclic carbonates, is used to obtain both racemic and enantiopure forms of the bay-region diol 4, and the non-bay region diol 5. ${ }^{1}$ H N M R and CD spectra of the cis- and trans-dihydrodiols of chrysene are described.

Introduction

Chrysene $\mathbf{1}$ is widely distributed in the environment due to the incomplete combustion of fossil fuels and was the first member of the ubiquitous polycyclic aromatic hydrocarbon (PAH) series to be detected in soil samples. ${ }^{1}$ Predominant metabolites of chrysene $\mathbf{1}$ from mammalian liver preparations are its trans-1,2- and trans-3,4-dihydrodiols which have been shown to be formed from the corresponding arene oxides (e.g. 3 and $\mathbf{2}$, Scheme 1). $)^{2,3} \mathrm{M}$ utagenicity and tumour studies ${ }^{4-6}$ have provided evidence that a metabolically formed ${ }^{2,7,8}$ bay-region 1,2 diol 3,4-epoxide is responsible for most of the carcinogenic activity of the hydrocarbon. Synthetic routes to the arene oxides $\mathbf{2}^{9}$ and $3,{ }^{10}$ the corresponding trans-dihydrodiols and diol epoxides, in both racemic and enantiomerically enriched forms, have been reported. ${ }^{2,7-12}$

E arlier studies have demonstrated the ability of mutant strains of soil bacteria, e.g. Pseudomonas putida and Sphingomonas yanoikuyae ${ }^{13}$ (formerly identified as a Beijerinckia sp^{14}) to accumulate cis-dihydrodiol metabolites of bicyclic, ${ }^{15,16}$ tricyclic, ${ }^{17-19}$ tetracyclic ${ }^{20,21}$ and pentacyclic ${ }^{20}$ members of the PA H series. In addition, the initial reaction in the degradation of pyreneby a M ycobacterium sp. involves theformation of cis- and trans-dihydrodiols. ${ }^{22}$ D ioxygenase-catalysed asymmetric dihydroxylation of PAHs may, in principle, yield regioisomeric cisdihydrodiol metabolites. In practice, however, few strains have been reported that accept PA H substrates larger than naphthalene. ${ }^{23}$ The biphenyl dioxygenase system present in the Sphingomonas yanoikuyae mutant strain B8/36 has, however, been found to biotransform larger PAH substrates including anthracene, ${ }^{18}$ phenanthrene, ${ }^{19}$ benz[a]anthracene ${ }^{20,21}$ and benzo[a]pyrene ${ }^{20}$ largely to bay-region regioisomers of enantiopure cisdihydrodiol metabolites. Thebacterial biphenyl dioxygenasesystem catalyses cis-dihydroxylation of arenes with optimal regioselectivity in the sequence: bay-region bonds \gg non-K region bonds > K -region bonds. Chrysene 1, a symmetrical tetracyclic PAH containing duplicate bay regions, non-K -regions and K-

regions should thus, in principle, be a good substrate for regioselectivity studies. Despite its early detection and prevalence as an environmental pollutant, ${ }^{1}$ the metabolism of chrysene $\mathbf{1}$ by procaryotic organisms has received relatively little attention. ${ }^{24,25}$

Table $1{ }^{1} \mathrm{H} N \mathrm{M}$ R spectra $\left[500 \mathrm{M} \mathrm{Hz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{C}=\mathrm{O}(\mathrm{A})\right.$ and $\mathrm{CD}_{3} \mathrm{OD}(\mathrm{B})$] of the cis- and trans-dihydrodiols of chrysene. A ssignments are based on decoupling ${ }^{\text {a }}$

D ihydrodiols (solvent)	M ethine protons		Olefinic protons		Hydroxy protons	
	4-H	3-H	1-H	2-H	$3-\mathrm{OH}$	$4-\mathrm{OH}$
cis-3,4-D ihydroxy- ${ }^{\text {b }} 4$ (A)	5.37	4.67	6.59	6.00	4.24	4.01
	$J_{1,2} 9.6, J_{1,3} 2.8, J_{2,3}=J_{2,4} 1.7, J_{3,4} 5.1$					
cis-3,4-D ihydroxy- ${ }^{\text {b }} 4$ (B)	5. 37$\mathrm{~J}_{1,2} 9$	4.65		6.08		
trans-3,4-D ihydroxy- (A)		$\begin{gathered} 3.9, \mathrm{~J} 2, \\ 4.41 \end{gathered}$	$1.8, \mathrm{~J}$ 6.78	6.26	3.91	4.12
	$\begin{aligned} & \mathrm{J}_{1,2} 9 \\ & 5.49 \end{aligned}$	$\begin{gathered} 1.6, \mathrm{~J} 2,3 \\ 4.43 \end{gathered}$	$\mathrm{J}_{3,4} 1.5$		$\mathrm{J}_{\text {3,онз }} 6.4, \mathrm{~J}_{4, \text { он } 4} 6.2$	
trans-3,4-D ihydroxy- (B)			6.90	6.29		
	$J_{1,2} 9.5, J_{1,3} 0, J_{2,3} 5.5, J_{3.4} 1.8$					
	1-H 2-H		4-H	3-H	1-OH	$2-\mathrm{OH}$
cis-1,2-D ihydroxy-5 (A)	4.79	4.41	7.46	6.30	-	-
	$\mathrm{J}_{4,2} 5.5, \mathrm{~J}_{2,3} 4.0, \mathrm{~J}_{3,4} 9.9$					
cis-1,2-D ihydroxy-5 (B)					-	-
trans-1,2-D ihydroxy- (A)				6.21	4.69	4.34
	${ }_{1} \mathrm{~J}_{1,2}$	3 $=\int_{2,4} 2.4, J_{3,4} 10.3$5.51			$\int_{1, \mathrm{OH} 1}$	$\text { 2,OH2 } 4.3$
trans-1,2-D ihydroxy- (B)	1,2 4.90			6.26	-	-
	$\mathrm{J}_{1,2} 10.6, \mathrm{~J}_{2,3} 2.6, \mathrm{~J}_{2.4} 2.2, \mathrm{~J}_{3,4} 10.3$					

${ }^{a}$ A romatic regions of the cis- and trans-dihydrodiols are almost identical ($\pm<0.05$) unless noted otherwise: 3,4-dihydrodiols, 8.25 ($5-\mathrm{H}$), 7.88 ($6-\mathrm{H}$), $7.96(7-\mathrm{H}), 7.61(8-\mathrm{H}), 7.67(9-\mathrm{H}), 8.91\left(10-\mathrm{H}\right.$, cis-isomer), $8.78\left(10-\mathrm{H}\right.$, trans-isomer), $8.77(11-\mathrm{H})$ and $7.50(12-\mathrm{H})$ with $\mathrm{J}_{5.6} 9.3, \mathrm{~J}_{7,8} 8.0, \mathrm{~J}_{7,9} 1.0, \mathrm{~J}_{8,9}$ $6.9, J_{9,10} 8.0, J_{8,10} 1.0, J_{11,12} 8.6 ; 1,2$-dihydrodiols, $8.20(5-H), 7.86(6-H), 7.96(7-H), 7.65(8-H), 7.70(9-H), 8.81(10-H), 8.77$ (11-H), 7.89 (12-H, cisisomer), 8.00 ($12-\mathrm{H}$, trans-isomer). ${ }^{\mathrm{b}}$ The bacterial metabolite and the synthetic product had identical spectra.

Chrysene 1 was examined as a substrate for the biphenyl dioxygenase system present in the Sphingomonas yanoikuyae B8/36 mutant strain. Based upon earlier studies using other PAH substrates, it was anticipated that formation of the bayregion cis-3,4-dihydrodiol 4 would again be preferred over the non-bay-region cis-1,2-dihydrodiol 5 (Scheme 1). The second goal of these studies has been the synthesis of these dihydrodiols in optically pure form.

Results and discussion

M etabolism of chrysene $\mathbf{1}$ by m -xylene-induced cells of Sphingomonas yanoikuyae strain B8/36, was examined under similar conditions to those used for biotransformation of other PA H. s. ${ }^{17-21}$ Chromatography of an ethyl acetate extract of the incubation mixture on silica gel provided a dihydrodiol fraction which was examined by HPLC on a DuPont Zorbax Sil column ($0.95 \times 25 \mathrm{~cm}$) eluted with 2.0% methanol and 15% ethyl acetate in hexane at $12.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. U nder these conditions, synthetic (see later) chrysene cis-5,6-(K -region), cis-3,4-(bayregion) and cis-1,2-(non-K -region) dihydrodiols are readily separated ($R_{t} 3.76,4.84$ and 5.35 min , respectively). Only a single metabolite, co-chromatographic with the chrysene cis3,4 -dihydrodiol 4 , was detected. Its $U V$ spectrum is practically identical to that of trans-3,4-dihydroxy-3,4-dihydrochrysene but markedly different from those of trans-1,2-dihydroxy-1,2dihydrochrysene and trans-5,6-dihydroxy-5,6-dihydrochrysene. ${ }^{11}$ Preparative chromatography allowed isolation of the metabolite in ca. 1% yield. The very low yield of the metabolite was presumably due to the low solubility of chrysene 1 in the aqueous culture medium.
${ }^{1} \mathrm{H}$ N M R spectra of the cis-1,2- and cis-3,4-dihydrodiols of chrysene (5 and 4) are compared to their corresponding trans isomers ${ }^{11}$ in Table 1. The pattern of coupling constants is consistent with that observed previously; ${ }^{17-21}$ both cis and trans non-bay-region dihydrodiols prefer to have their benzylic hydroxy group ($\mathrm{C}-1$ in chrysene) quasi-equatorial. For the trans-1,2-dihydrodiol, $J_{1,2}$ is close to its maximal value, indicating a strong preference for the quasi-equatorial orientation of the hydroxy groups (quasi-axial $\mathrm{H}-1$ and $\mathrm{H}-2$), and, as expected for quasi-axial H-2, $\mathrm{J}_{2,4}$ is substantial (2.4 Hz). In the cis-1,2-dihydrodiol 5, H-2 exhibits no measurable
homoallylic coupling with $\mathrm{H}-4$; thus $\mathrm{H}-2$ is quasi-equatorial, $\mathrm{OH}-2$ quasi-axial and OH-1 quasi-equatorial as in the trans isomer. In contrast, for the bay-region trans-3,4-dihydrodiol, small values of $J_{3,4}$ are diagnostic of a preference for the conformation with the hydroxy groups quasi-axial (H-3 and H-4 quasi-equatorial). However, a small but significant homoallylic coupling $\int_{1,3}$ suggests that this preference is not absolute, and that there is some contribution to the conformational equilibrium from the other conformer, in which H-4 is quasi-axial (hydroxy groups quasi-equatorial). In the cis-3,4-dihydrodiol, OH-4 in the bay region remains largely quasi-axial and thus $\mathrm{OH}-3$ must be quasi-equatorial; the corresponding quasi-axial orientation of $\mathrm{H}-3$ results in a much larger value ($2.8-2.9 \mathrm{~Hz}$) for $\mathrm{J}_{1,3}$.
Enantiopurity of the cis-dihydrodiol metabolite $\mathbf{4}\left([a]_{\mathrm{D}}+112\right)$ was determined as $>98 \%$ by ${ }^{1} \mathrm{H}$ N M R analysis following reaction with (-)- and (+)-2-(1-methoxyethyl)phenylboronic acid (MPBA) ${ }^{26}$ to yield the corresponding boronate 8. ($3 \mathrm{~S}, 4 \mathrm{R}$) Absolute configuration of the metabolite was established by catalytic hydrogenation to yield the previously characterized (-)-(3S,4R)-cis-3,4-dihydroxy-1,2,3,4-tetrahydrochrysene 6 ($[a]_{\mathrm{D}}-45$ observed, lit., ${ }^{7-9}-43$). ${ }^{1} \mathrm{H}$ N M R analyses of the bis[methoxy(trifluorophenyl)acetic] acid (MTPA) ester 7a and boronate 8 (Scheme 2) were consistent with the stereochemical assignment and estimation of optical purity. ${ }^{26,27} \mathrm{CD}$ spectra of the cis- and trans-dihydrodiols of chrysene are compared in Fig. 1. These spectra are presumed to be derived primarily from the skew sense of the vinyl group relative to the phenanthrene chromophore with little contribution from the chiral methanol centres. ${ }^{28}$ Although one might have expected that the CD spectra of cis-($3 \mathrm{~S}, 4 \mathrm{R}$)- and trans-(3R,4R)-dihydrodiols (both with axial benzylic hydroxy groups) would be similar, they are quite different. It is inferred that small changes in the torsion angle between the vinyl group and the phenanthrene chromophore markedly alter the CD spectra of these as well as the $1,2-$ dihydrodiols.
Synthetic routes to the cis-dihydrodiols 4 and 5 have now been developed. Racemic cis-3,4-tetrahydrodiol 6 was synthesized by osmylation of 1,2 -dihydrochrysene which was available from earlier studies, ${ }^{9,11}$ R acemic cis-tetrahydrodiol 6 was treated with 1,1'-carbonyldiimidazole (CDA) in benzene to yield the cyclic tetrahydrocarbonate 9 in 85\% yield (Scheme 3).

7b

Scheme 2 Reagents: i, Pd/C, H_{2}; ii, M TPACI-pyridine; iii, M PBA
Benzylic bromination of compound 9, using N -bromosuccinimide (NBS) in CCl_{4}, yielded an isomeric mixture of bromocarbonates 10a and 10b (89% yield), which was, in turn, dehydrobrominated using 1,5-diazabicyclo[4.3.0]non-5-ene (D BN), to give the dihydrocarbonate 11 (93% yield). H ydrolysis, using an aqueous methanolic solution of potassium carbonate, gave the racemic cis-dihydrodiol 4 (55% yield) in an overall yield of ca. 40% from the tetrahydrodiol 6 . The use of cyclic carbonate esters of cis-tetrahydrodiols constitutes an effective new approach to the synthesis of cis-dihydrodiols.

Conversion of the racemic cis-tetrahydrodiol 6 to the corresponding bis-M TPA esters 7a and 7b using (+)-M TPA chloride in pyridine provided both a measure of diol enantiopurity (Scheme 2), and a method for the resolution of diol enantiomers. The bis-M TPA esters 7a and 7b, derived from a racemic sample of diol 6 , were thus separated by PLC on silica gel into the less polar $7 \mathbf{b}\left(\mathrm{R}_{\mathrm{f}} 0.26[a]_{\mathrm{D}}+49\right)$ and more polar $7 \mathbf{a}\left(\mathrm{R}_{\mathrm{f}} 0.21\right.$ $[a]_{D}+43$) diastereoisomers. H ydrolysis of the diesters $7 b$ and $7 a$ yielded the corresponding cis-tetrahydrodiol enantiomers (+)$(3 R, 4 S)-6\left([a]_{D}+46\right)$ and $(-)-(3 S, 4 R)-6\left([a]_{D}-45\right)$ respectively. (+)-(3R,4S)-cis-Tetrahydrodiol 6 ($[a]_{D}+46$) was treated in a similar manner to the racemic sample to provide, in sequence, the cyclic tetrahydrocarbonate 9 (83% yield, $[a]_{\mathrm{D}}-306$), an isomeric mixture of bromo carbonates 10a and 10b (93\% yield $\left.[a]_{\mathrm{D}}-150\right)$, the dihydro carbonate 11 (89% yield, $[a]_{\mathrm{D}}-467$) and the $(-)-(3 R, 4 \mathrm{~S})$-cis-dihydrodiol 4 (52% yield, $[a]_{\mathrm{D}}-111$) The cis-dihydrodiol enantiomer 4 ($[a]_{\mathrm{D}}+111$) which corresponds to the metabolite was synthesised using the alternative cis-tetrahydrodiol enantiomer (-)-6 ($[a]_{\mathrm{D}}-45$) following an identical reaction sequence. The derived synthetic and metabolic cis-tetrahydrodiol samples were indistinguishable spectrally. The synthetic sequence and absolute configurations of products from ($35,4 \mathrm{R}$)-cis-tetrahydrodiol 6 are shown in Scheme 3.

Conversion of the racemic cis-1,2-tetrahydrodiol 12 to cis-1,2-dihydrodiol 5 was achieved in an overall yield of ca. 15\% using a bromination-dehydrobromination sequence on the corresponding cyclic carbonates $(\mathbf{1 2} \longrightarrow \mathbf{1 3} \longrightarrow \mathbf{1 4} \longrightarrow \mathbf{1 5} \longrightarrow \mathbf{5}$ Scheme 4). In view of the lower overall yield obtained for cisdihydrodiol 5, compared with dihydrodiol 4, using the cyclic carbonate method, we also examined the use of acetate as a blocking group for the hydroxy groups as had been done previously in the synthesis of cis-dihydrodiols from benzo[a]anthracene. ${ }^{21}$ The sequence parallels that shown in Scheme 4 ($\mathbf{1 2} \longrightarrow \mathbf{1 3} \longrightarrow \mathbf{1 4} \longrightarrow \mathbf{1 5} \longrightarrow \mathbf{5}$), except that vicinal cis-

Fig. 1 Circular dichroism spectra of one enantiomer [(R) absolute configuration at the benzylic hydroxyl position] of each of the isomeric chrysene dihydrodiols [methanol, $I=0.2 \mathrm{~cm}$ for the cis-(3S,4R) and trans-(1R , 2R); I = 1.0 cm for the cis-($1 \mathrm{R}, 2 \mathrm{~S}$) and trans-($3 \mathrm{R}, 4 \mathrm{R}$) isomers]. Observed ellipticities were converted to $\Delta \varepsilon\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ by use of sample concentrations determined by weight (cis-3,4-dihydrodiol) or from their absorption spectra and the following UV extinction coefficients in methanol: trans-3,4-dihydrodiol, 64200 (277 nm), ${ }^{11}$ cis-1,2dihydrodiol, 66100 (220 nm) (see Experimental section); trans-1,2dihydrodiol, 69500 (220 nm) [this work, determined for the (1S,2S)enantiomer]. Selected $\Delta \varepsilon$ values are as follows: cis-(3S,4R), 14.3 (277 $n m)$; trans-(3R ,4R), -11.0 (316 nm); cis-(1R ,2S), 9.6 (261 nm) and trans-(1R ,2R), -36.2 (244nm).
diacetates replace the cyclic carbonate. Attempted direct dehydrogenation of the racemic diacetate 16, obtained in 98% yield from 12, in refluxing benzene or dioxane was unsuccessful. Benzylic bromination of the diacetate $\mathbf{1 6}$ using NBS in CCl_{4} produced an isomeric mixture ($9: 1$) of two bromodiacetates 17a and 17b (98% yield). A ttempted dehydrobromination with DBN or 1,8-diazabicyclo[5.3.0]undec-7-one (DBU) was also unsuccessful. H owever, dehydrobromination of the mixture of bromodiacetates 17 to the diacetate 18 was successfully achieved (85% yield) in refluxing xylene in the presence of sodium hydrogen carbonate and triethylamine In the absence of triethylamine, complete aromatization took place. Ammonolysis of diacetate $\mathbf{1 8}$ with ammoniacal methanol provided

Scheme 3 Reagents: i , $(\mathrm{Imid})_{2} \mathrm{CO}$-benzene; ii, $\mathrm{NBS}-\mathrm{CCl}_{4} ; \mathrm{iii}, \mathrm{DBN}$ THF;iv, $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$
the desired cis-1,2-dihydrodiol 5 (94% yield). Overall yield for the four steps $(\mathbf{1 2} \longrightarrow \mathbf{1 6} \longrightarrow \mathbf{1 7} \longrightarrow \mathbf{1 8} \longrightarrow \mathbf{5})$ from cistetrahydrodiol $\mathbf{1 2}$ using acetates as blocking groups was ca. 75\%.

E nantiomerically pure samples of cis-tetrahydrodiol $\mathbf{1 2}$ were previously obtained from hydrolysis of 1,2 -epoxy-1,2,3,4tetrahydrochrysene and from silver acetate treatment of the trans-2-bromo-1-acetate derivative, both of which were derived from the corresponding bromohydrin 19 (resolved via the bromoM TPA ester). ${ }^{10}$ In view of the low yields available from the latter approach, the alternative method shown in Scheme 5 (based upon an earlier report ${ }^{29}$ where a bromohydrin was converted to a diol) was adopted. The enantiopure (+)-(1R , 2R)-trans-bromohydrin 19 ($[a]_{\mathrm{D}}+27$, available from chromatographic resolution and hydrolysis of the corresponding M TPA esters ${ }^{10}$) was converted to the (-)-($1 \mathrm{R}, 2 \mathrm{~S}$)-cis-tetrahydrodiol 12 via the bromoester 20, the dioxolane mixture 21a and 21b, and the ester mixture 22a and 22b in a total yield of ca. 70\%. Conversion of the (1R,2S)-cis-tetrahydrodiol 12 ($[a]_{\mathrm{D}}-29$) to (1R,2S)-cis-dihydrodiol $5\left([a]_{\mathrm{D}}+74\right)$ was carried out in a similar manner to that described for the racemic compounds using the sequence $\mathbf{1 2} \longrightarrow \mathbf{1 3} \longrightarrow \mathbf{1 4} \longrightarrow \mathbf{1 5} \longrightarrow \mathbf{5}$ shown in Scheme 4.

D espite the advantage of having synthetic standards of three possible vicinal cis-dihydrodiols of chrysene 1, only the cisdihydrodiol 4 could be detected by HPLC on examination of several crude extracts obtained by biotransformation. Preliminary experiments have however provided tentative evidence of a trace metabolite that appears to be the product from two dihydroxylation processes and further efforts to isolate and characterize this metabolite are in progress. The virtually exclusive formation of the $35,4 \mathrm{R}$-enantiomer of cis-dihydrodiol 4, confirms that the bay region is a dominant feature in controlling both the stereoselectivity and the regioselectivity of dioxygenase-catalysed cis-dihydroxylation of arenes.

Experimental

${ }^{1} \mathrm{H} N \mathrm{M} R$ spectra were measured at 300 M Hz in CDCl_{3} solvent unless otherwise indicated. Chemical shifts (δ) are reported in

12

16

17 a, b

18

13

14

15

Scheme 4 Reagents: i, (Imid) ${ }_{2} \mathrm{CO}$-benzene; ii, $\mathrm{NBS}^{2} \mathrm{CCl}_{4} ;$ iii, D BNTHF; iv, $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}-\mathrm{THF} ; \quad \mathrm{v},(\mathrm{Ac})_{2} \mathrm{O}$-pyridine; vi, $\mathrm{NaHCO}_{3}-$ $\mathrm{Et}_{3} \mathrm{~N}$-xylene; vii, $\mathrm{NH}_{3}-\mathrm{MeOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$
ppm relative to TM S and coupling constants (J) in $\mathrm{Hz} .{ }^{1} \mathrm{H}$ NM R spectra of optically active compounds were identical to their racemic counterparts in all cases. Optical rotations ($[a]_{\mathrm{D}}$) were measured at ambient temperature ca. $20^{\circ} \mathrm{C}$ and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Standard work-up consisted of drying of the pooled organic phase over anhydrous $\mathrm{M} \mathrm{gSO}_{4}$ and concentration in vacuo. Light petroleum refers to the fraction with bp $40-60^{\circ} \mathrm{C}$.
Racemic samples of cis-3,4-dihydroxy-1,2,3,4-tetrahydrochrysene $\mathbf{6}$ and cis-1,2-dihydroxy-1,2,3,4-tetrahydrochrysene $\mathbf{1 2}$ were either obtained from the corresponding dihydrochrysene using the literature procedures ${ }^{9,10,30}$ or were prepared by dihydroxylation $\left(\mathrm{OsO}_{4}\right)$ of the corresponding dihydrochrysenes ${ }^{6}$ and synthesis of tetrahydrodiol $\mathbf{1 2}$ is reported herein.

19

Scheme 5 Reagents: i, Ethyl malonyl chloride; ii, $\mathrm{NaH}-\mathrm{THF} ; \mathrm{iii}, \mathrm{HCl}-$ THF; iv, Et E_{3}-THF

B iotransformation of chrysene 1 and identification of the cisdihydrodiol metabolite 4

A small scale biotransformation was carried out by incubating m -xylene-induced cells of Sphingomonas yanoikuyae strain B8/ 36 ($\mathrm{A} 600=5.0$) suspended in $250 \mathrm{~cm}^{3} 0.05 \mathrm{~m}$ potassium phosphate buffer (pH 7.2) containing 0.5% pyruvate and 0.05% (w / v) chrysene (solution in 0.2% DM F). The reaction mixture was incubated in the dark at $30^{\circ} \mathrm{C}$ with shaking (220 rpm) for 20 h . The cells were subsequently removed by centrifugation and after saturation with sodium chloride the supernatant was extracted with ethyl acetate $\left(3 \times 125 \mathrm{~cm}^{3}\right)$. The dried ethyl acetate extract $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ was concentrated and the light brown semi-solid ($\sim 0.005 \mathrm{~g}$) was purified by PLC on silica-gel using $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (92:8), and by HPLC (see Results and discussion) to yield cis-dihydrodiol metabolite $4(0.0025 \mathrm{~g})$; mp 241$243{ }^{\circ} \mathrm{C}$ (decomp.) as colourless needles ($\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{OOH}$); $[a]_{\mathrm{D}}$ +112 (c 0.5, THF) (Found: M^{+}, 262.0998. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{M}, 262.0994) ; \lambda_{\text {max }}($ methanol $) / \mathrm{nm} 227\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 28460), 278 (57650), 307 (11 200) and 320 (9010). See Table 1 for ${ }^{1} \mathrm{H}$ NMR data.
The enantiopurity of the dihydrodiol metabolite $4(0.0005 \mathrm{~g})$ was established by treatment with $(-)-(\mathrm{S})$ - and $(+)-(\mathrm{R})-2-(1-$ methoxyethyl) phenylboronic acid (0.00034 g) in chloroform solution. The boronate reaction product 4-[2-(1-methoxyethyl)-phenyl]-2a,5a-dihydrochryseno[3,4-d][1,3,2]dioxaborole 8 was filtered through a small bed of sodium sulfate, concentrated to dryness and the residue dissolved in CDCl_{3} for ${ }^{1} \mathrm{H} N M \mathrm{R}$ analysis. ${ }^{26}$ The diagnostic OM e signal of the boronate ester 8 , formed with (-)-(S)-M PBA ($\delta_{\mathrm{H}} 3.11$) was shifted upfield ($\Delta \delta-0.14$) from that of the $(+)-(R)-M$ PBA ester, suggesting an (R)configuration for the benzylic C-4 position. Thus the cisdihydrodiol metabolite $\mathbf{4}$ was predicted to have ($3 S, 4 R$) absolute configuration. Since only one OM e signal was observed in the ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum of either the (R)- or the (S)-M PBA ester

8, the cis-dihydrodiol metabolite 4 was assumed to be enantiopure

The absolute configuration of the (+)-cis-dihydrodiol metabolite 4 ($0.004 \mathrm{~g},[a]_{\mathrm{D}}+112$, in $2 \mathrm{~cm}^{3}$ of methanol) was established by catalytic hydrogenation ($5 \% \mathrm{Pd} / \mathrm{C}, 0.002 \mathrm{~g}, 3 \mathrm{~h}, 1$ atm pressure) to the (- -cis-tetrahydrodiol 6 known to have ($3 \mathrm{~S}, 4 \mathrm{R}$) absolute configuration; ${ }^{7,9}$ white crystalline solid (0.0035 $\left.\mathrm{g},[a]_{\mathrm{D}}-45, \mathrm{c} 0.5, \mathrm{THF}\right), \mathrm{mp} 192-196^{\circ} \mathrm{C}$. The enantiopure cistetrahydrodiol 6 was found to have identical spectral characteristics to a racemic sample. The bis-M TPA ester 7a, formed from (-)-cis-tetrahydrodiol 6 ($[a]_{\mathrm{D}}-45$), using (+)-M TPA chloride in pyridine containing a trace of D M A P, showed only two OM e signals at $\delta 3.34$ and 3.57 confirming that the cis-tetrahydrodiol derivative 6 and the parent cis-dihydrodiol metabolite $\mathbf{4}$ were both enantiopure

(\pm)-1,2,2a,5a-Tetrahydrochryseno[3,4-d][1,3]dioxol-4-one 9

To a refluxing mixture of racemic cis-tetrahydrodiol $6(0.120 \mathrm{~g}$, 0.45 mmol) in dry benzene ($40 \mathrm{~cm}^{3}$), 1,1'-carbonyldiimidazole $(0.180 \mathrm{~g}, 1.10 \mathrm{mmol})$ was added in portions over a period of 8 h , under nitrogen, and heating was continued overnight. A fter cooling, the benzene layer was washed with water ($2 \times 35 \mathrm{~cm}^{3}$), the aqueous layer was subsequently back extracted with benzene ($2 \times 60 \mathrm{~cm}^{3}$). Standard work-up provided a crude product which was purified by PLC using CHCl_{3}-light petroleum ($30: 70$). Cyclic carbonate 9 ($0.112 \mathrm{~g}, 85 \%$) was obtained as colourless crystals, $\mathrm{mp} 220^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-pentane) (Found: C , 78.7; $\mathrm{H}, 4.8 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.6 ; \mathrm{H}, 4.9 \%$); $\delta_{\mathrm{H}} 2.09-2.18$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 2.30-2.36(1 H, m, 2-H), 2.80-2.89 (1 H, m, 1-H), 3.1-3.2 (1 H, m, 1-H), 5.19-5.25 (1 H, m, 2a-H), 6.3 ($1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}_{2 \mathrm{a}, 5 \mathrm{a}} 7.4,5 \mathrm{a}-\mathrm{H}\right), 7.39\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{12,13} 8.8,13-\mathrm{H}\right), 7.53-7.64(2 \mathrm{H}, \mathrm{m}$, 9-H and $10-\mathrm{H}$), $7.82\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,7} 9.2,7-\mathrm{H}\right), 7.84\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{8,9}\right.$ $\left.7.8, \mathrm{~J}_{8,10} 1.3,8-\mathrm{H}\right), 7.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,7} 9.2,6-\mathrm{H}\right), 8.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{11,10}\right.$ 9.0, $11-\mathrm{H}$), $8.64\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{12,13} 9.0,12-\mathrm{H}\right.$); $v_{\max }\left(\mathrm{K} \mathrm{Br}^{2}\right) / \mathrm{cm}^{-1} 1800$ (C=O); m/z (EI) 290 ($\mathrm{M}^{+}, 100 \%$).

(\pm)-1-Bromo-1,2,2a,5a-tetrahydrochryseno[3,4-d][1,3]dioxol-4one 10a, 10b

The racemic cyclic carbonate $9(0.100 \mathrm{~g}, 0.34 \mathrm{mmol}), \mathrm{N}$ BS ($0.064 \mathrm{~g}, 0.36 \mathrm{mmol}$) and AIBN (0.005 g), in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and carbon tetrachloride $\left(25 \mathrm{~cm}^{3}\right)$ was irradiated with a heating lamp and stirred under nitrogen at $50-60^{\circ} \mathrm{C}$ for $60 \mathrm{~min} .{ }^{1} \mathrm{H}$ NM R analysis of an aliquot indicated that carbonate 9 had been consumed giving two stereoisomers 10a, 10b in a ratio of $90: 10$. Succinimide was removed by filtration from the reaction mixture, and the solvent evaporated to leave a pale brown oil ($0.112 \mathrm{~g}, 89 \%$). The pure, major stereoisomer 10a was obtained by preparative TLC using CHCl_{3}-light petroleum ($50: 50$), and recrystallization of a small portion of the purified product; $\mathrm{mp} 240^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-pentane); $\delta_{\mathrm{H}} 2.40-2.50(1 \mathrm{H} \mathrm{} \mathrm{~m},, 2-$ H), 2.84-2.92 (1 H, m, 2-H), 5.53-5.57 (1 H, m, 2a-H), 5.60 (1 H, dd, J $\left.{ }_{1,2}=J_{1,2^{2}} 3.3,1-H\right), 6.29\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{2 \mathrm{a}, 5 \mathrm{a}} 7.0,5 \mathrm{a}-\mathrm{H}\right), 7.56-$ 7.67 ($3 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}$ and $13-\mathrm{H}$), 7.86-7.90 ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 8-$ H), $8.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,7} 9.2,6-\mathrm{H}\right), 8.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{12,13} 7.6,12-\mathrm{H}\right)$ and $8.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{10,11} 8.7,11-\mathrm{H}\right) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1788(\mathrm{C}=0)$.

(\pm)-2a,5a-D ihydrochryseno[3,4-d][1,3]dioxol-4-one 11

D BN ($0.2 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}$) was added dropwise to a stirred solution of racemic stereoisomers 10a, 10b ($0.100 \mathrm{~g}, 0.27 \mathrm{mmol}$) in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. The resulting mixture was stirred for a further 12 h at room temperature. Water (15 cm^{3}) was added, and the THF was removed under reduced pressure. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40$ cm^{3}). Purification by PLC using $\mathrm{CH} \mathrm{Cl}_{3}$-light petroleum ($25: 75$) gave compound 11 ($0.072 \mathrm{~g}, 93 \%$); white crystals, mp 168$178^{\circ} \mathrm{C}$ (decomp., from CHCl_{3}-hexane) (Found: C, $79.2 ; \mathrm{H}, 3.9$. $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, 79.1; H, 4.2\%); $\delta_{\mathrm{H}} 5.68-5.72$ (1 H , ddd, $\mathrm{J}_{2 a, 5 a} 9.6, \mathrm{~J}_{2,2 \mathrm{a}} 3.0, \mathrm{~J}_{1,2 \mathrm{a}} 1.1,2 \mathrm{a}-\mathrm{H}$), $5.96\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1,2} 9.4, \mathrm{~J}_{2,2 \mathrm{a}}\right.$ 3, 2-H), $6.45\left(1 \mathrm{H}, \mathrm{d}_{1}, \mathrm{~J}_{1,2} 9.4,1-\mathrm{H}\right), 6.70\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{2 \mathrm{a}, 5 \mathrm{a}} 9.4,5 \mathrm{a}-\right.$ H), 7.39 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{12.13} 8.5,13-\mathrm{H}\right), 7.57-7.65(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H})$,
7.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,7} 9.4,7-\mathrm{H}$), 7.86 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 9.26,8-\mathrm{H}$), 7.93 (1 $\left.\mathrm{H}, \mathrm{d}, \mathrm{J}_{6,7} 9.3,6-\mathrm{H}\right), 8.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{10,11} 7.9,11-\mathrm{H}\right)$ and $8.70(1 \mathrm{H}$, $\mathrm{d}_{\mathrm{J}} \mathrm{J}_{12,13} 8.5,12-\mathrm{H}$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1794$ ($\mathrm{C}=\mathrm{O}$); m/z (EI) 288 $\left(\mathrm{M}^{+}, 9 \%\right)$ and $244\left(\mathrm{M}^{+}-\mathrm{CO}_{2}, 3\right)$.
(\pm)-cis-3,4-D ihydroxy-3,4-dihydrochrysene 4
To a stirred mixture of THF $\left(2 \mathrm{~cm}^{3}\right)$, methanol $\left(5 \mathrm{~cm}^{3}\right)$, water (1 cm^{3}) and triethylamine ($1 \mathrm{~cm}^{3}$) was added the racemic cyclic carbonate $11(0.070 \mathrm{~g}, 0.24 \mathrm{mmol})$ in THF ($1 \mathrm{~cm}^{3}$) at room temperature. The reaction was monitored by TLC using CHCl_{3}-methanol as eluent ($95: 5$). On completion (12 h), the reaction mixture was concentrated under reduced pressure and extracted thoroughly with ethyl acetate ($4 \times 10 \mathrm{~cm}^{3}$). Purification by PLC using 0.1% triethylamine in CHCl_{3}-methanol ($95: 5$) and crystallization gave pure cis-3,4-dihydroxy-3,4dihydrochrysene 4 (0.035 g , 55\%); colourless crystals, mp 180$183^{\circ} \mathrm{C}$ (decomp., from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) (Found: M^{+}, 262.10128. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{M}, 262.09937$); $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 262\left(\mathrm{M}^{+}\right.$, 43%) and $244\left(M^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$. The ${ }^{1} \mathrm{H} N M R$ spectrum of the synthetic sample of racemic cis-dihydrodiol $\mathbf{4}$ was identical to that of metabolite 4.
($3 \mathrm{~S}, 4 \mathrm{R}$)- and ($3 \mathrm{R}, 4 \mathrm{~S}$)-cis-3,4-B is[(R)-2-methoxy-2-phenyl-2-trifluoromethylacetoxy f1,2,3,4-tetrahydrochrysene 7a and 7b
$(+)$-M TPA chloride ($2.1 \mathrm{~g}, 8.3 \mathrm{mmol}$) was added slowly to a stirred solution of racemic cis-tetrahydrodiol $6(1 \mathrm{~g}, 3.78 \mathrm{mmol})$ and D M A P ($0.08 \mathrm{~g}, 0.65 \mathrm{mmol}$) in dry pyridine $\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and stirring was continued (24 h) at room temperature. Saturated aqueous sodium hydrogen carbonate $\left(20 \mathrm{~cm}^{3}\right)$ was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ cm^{3}). After standard work-up followed by column chromatography on silica gel using diethyl ether-light petroleum (10:90), the diastereoisomeric mixture 7a, $7 \mathbf{b}$ was obtained as a viscous oil ($2.24 \mathrm{~g}, 85 \%$). Separation of the two diastereoisomers was achieved by means of PLC using diethyl ether-light petroleum ($5: 95$) as eluent.
(+)-cis-(3R ,4S)-B is[(R)-2-methoxy-2-phenyl-2-trifluoro-
methylacetoxy]-1,2,3,4-tetrahydrochrysene 7b. Less polar isomer ($\mathrm{R}_{\mathrm{f}} 0.26$), $0.963 \mathrm{~g}, 43 \% ; \mathrm{mp} \mathrm{183-186}{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$ - pentane); $[a]_{\mathrm{D}}+49\left(\mathrm{c} \mathrm{1.2}, \mathrm{CHCl}_{3}\right.$) (Found: C, 65.3; $\mathrm{H}, 4.3 . \mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{6}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 4.3 \%)$; $\delta_{\mathrm{H}} 2.10(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.19(4 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}$ and OM e$)$, $3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e})$, 5.61-5.68 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 6.76-7.98 ($17 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\mathrm{Ar}-\mathrm{H}$) and 8.66-8.72 ($2 \mathrm{H}, \mathrm{m}$, Ar-H).
(+)-cis-(3S,4R)-Bis[(R)-2-methox y-2-phenyl-2-trifluoro-methylacetoxy]-1,2,3,4-tetrahydrochrysene 7a. M ore polar iso$\operatorname{mer}\left(R_{f} 0.21\right), 1.07 \mathrm{~g}, 48 \% ; \mathrm{mp} 166-168{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-pentane); $[a]_{\mathrm{D}}+43\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right)$ (Found: C, 65.3; $\mathrm{H}, 4.1 . \mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{6}$ requires C, 65.5 ; $\mathrm{H}, 4.3 \%$); $\delta_{\mathrm{H}} 2.20(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.40(1 \mathrm{H}, \mathrm{m}$, 2-H), 3.24-3.29 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), $3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $3.57(3 \mathrm{H}, \mathrm{s}$, OM e), 5.62-5.68 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 7.03-8.03 ($17 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and Ar-H) and 8.62-8.66 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$).
(+)-(3R,4S)- and (-)-(3S,4R)-cis-3,4-D ihydroxy-1,2,3,4-tetrahydrochrysene 6
The bis-M TPA ester 7b ($0.500 \mathrm{~g}, 0.72 \mathrm{mmol},[a]_{\mathrm{D}}+49$), dissolved in THF ($30 \mathrm{~cm}^{3}$), was treated with methanolic 1 m sodium hydroxide $\left(15 \mathrm{~cm}^{3}\right)$ and stirred at room temperature for 24 h . Saturated aqueous ammonium chloride ($10 \mathrm{~cm}^{3}$) was added and the solution was concentrated in vacuo. Water (10 cm^{3}) was added and the product was extracted into ethyl acetate. Standard work-up provided the (+)-($3 \mathrm{R}, 4 \mathrm{~S}$)-tetrahydrodiol $6(0.151 \mathrm{~g}, 80 \%), \mathrm{mp} 190-196{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-methanol); $[a]_{\mathrm{D}}$ +46.4 (c 0.53, THF) (lit., ${ }^{9} \mathrm{mp} 196-198^{\circ} \mathrm{C},[a]_{\mathrm{D}}+43, \mathrm{THF}$). The bis-M TPA ester, 7a $[a]_{D}+43$, was treated in an identical manner to yield (-)-($3 \mathrm{~S}, 4 \mathrm{R}$)-cis-3,4-dihydroxy-1,2,3,4-tetrahydrochrysene 6, $[a]_{\mathrm{D}}-45$ (c 0.5, TH F).

(-)-cis-(2aR ,5aS)- and (+)-(2aS,5aR)-1,2,2a,5a-Tetrahydro-chryseno[3,4-d][1,3]dioxol-4-one 9

U sing a similar method for the conversion of racemic diol 6 to
carbonate 9, a sample of enantiopure diol (+)-6 ($0.100 \mathrm{~g}, 0.37$ mmol, $[a]_{\mathrm{D}}+46.4$) provided the (-)-cis-(2aR ,5aS) cyclic carbonate $9(0.100 \mathrm{~g}, 83 \%), \mathrm{mp} 216^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-pentane); $[a]_{\mathrm{D}}$ -306 (c 1.2, THF). Similar treatment of (-)-cis-tetrahydrodiol $6\left([a]_{\mathrm{D}}-45\right)$ gave (+)-(2aS,5aR)-cyclic carbonate 9, $[a]_{\mathrm{D}}+304$ (c $0.53, \mathrm{THF}$). B oth enantiomers of carbonate 9 showed identical spectral characteristics to the racemate.

(-)-(2aR ,5aS)- and (+)-(2aS,5aR)-1-Bromo-1,2,2a,5a-tetra-hydrochryseno[3,4-d][1,3]dioxol-4-one 10a and 10b

Bromination of carbonate 9 ($0.08 \mathrm{~g}, 0.27 \mathrm{mmol},[a]_{\mathrm{D}}-306$) with NBS ($0.05 \mathrm{~g}, 0.29 \mathrm{mmol}$) using the procedure described for the conversion of racemic diol to carbonate $\mathbf{1 0}$ provided the (-)-(2aR ,5aS) benzylic bromide mixture 10a, 10b ($0.094 \mathrm{~g}, 93 \%$), $\mathrm{mp} 232{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-pentane); $[a]_{\mathrm{D}}-150$ (c $0.15, \mathrm{CHCl}_{3}$) which was spectrally indistinguishable from the racemic sample. Similarly the $(+)$-enantiomer of carbonate 9 yielded the (+)(2aS,5aR) benzylic bromide mixture 10a, 10b.

(-)-(2aR ,5aS)- and (+)-(2aS,5aR)-2a,5a-D ihydrochryseno-[3,4-d][1,3]dioxol-4-one 11

Dehydrobromination of the bromo carbonate mixture 10a, 10b ($0.094 \mathrm{~g}, 0.25 \mathrm{mmol},[a]_{\mathrm{D}}-150$), as described for the conversion of the racemic samplegavethe (2aR ,5aS)-enantiomer of carbonate 11 ($0.065 \mathrm{~g}, 89 \%$ yield), $\mathrm{mp} 180^{\circ} \mathrm{C}$ (CHCl_{3}-pentane); $[a]_{\mathrm{D}}$ -467 (c $0.71, \mathrm{CHCl}_{3}$) which was spectrally indistinguishable from the racemic sample. The (+)-($2 \mathrm{aS}, 5 \mathrm{aR}$)-enantiomer of the bromo carbonate mixture 10a, 10b, similarly yielded the (2aS,5aR)-enantiomer of carbonate $11,[a]_{D}+462\left(c 0.6, \mathrm{CHCl}_{3}\right)$.

(-)-(3R,4S)- and (+)-(3S,4R)-cis-3,4-D ihydroxy-3,4-dihydrochrysene 4

A modification of the described procedure for hydrolysis of racemic carbonate 11 to cis-diol $\mathbf{4}$ was applied to each enantiomer. Thus, a solution of (-)-cyclic carbonate 11, $[a]_{\mathrm{D}}-467$, $(0.030 \mathrm{~g}, 0.10 \mathrm{mmol})$ and potassium carbonate $(0.001 \mathrm{~g})$ in a mixture of THF ($2 \mathrm{~cm}^{3}$), methanol ($3 \mathrm{~cm}^{3}$) and water ($0.5 \mathrm{~cm}^{3}$), was stirred for 48 h at room temperature. A fter dilution with water (10 cm^{3}) the organic solvent was removed under vacuum and the residual aqueous solution was extracted with ethyl acetate. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was removed under vacuum and the residue was purified by PLC on silica gel using CHCl_{3}-methanol (95:5) to yield (-)-(3R,4S)-3,4-dihydroxy-3,4-dihydrochrysene 4 ($0.014 \mathrm{~g}, 52 \%$), $[a]_{\mathrm{D}}-111$ (c 0.33, THF), $\mathrm{mp} 240-242^{\circ} \mathrm{C}$. Similarly an enantiopuresample of carbonate 11 ($0.060 \mathrm{~g}, 0.20 \mathrm{mmol},[a]_{\mathrm{D}}+462$) was converted into (+)-($3 \mathrm{~S}, 4 \mathrm{R}$)-cis-3,4-dihydroxy-3,4-dihydrochrysene 4 ($0.049 \mathrm{~g}, 90 \%$), mp $240-242{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-methanol); $[a]_{\mathrm{D}}+111$ (c 0.48, THF). The ${ }^{1} H N M R$ and CD spectra of the chemically synthesised (+)enantiomer of diol 4 were identical to the metabolite 4.
(\pm)-3a,4,5,13b-Tetrahydrochryseno[1,2-d][1,3]dioxol-2-one 13 U sing a similar procedure to that reported for the conversion of cis-diol 6 to carbonate 9 , cis-1,2-dihydroxy-1,2,3,4-tetrahydrochrysene 12 ($0.210 \mathrm{~g}, 0.79 \mathrm{mmol}$) provided the cyclic carbonate 13. This was purified by flash chromatography on silica gel using CHCl_{3}-pentane ($30: 70$) and crystallization to yield compound $13(0.184 \mathrm{~g}, 80 \%)$, mp $200-220^{\circ} \mathrm{C}^{\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.}$ pentane) (Found: $\mathrm{C}, 78.2 ; \mathrm{H}, 4.8 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.6$; H , 4.9\%); $\delta_{\mathrm{H}} 2.17-2.19$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 2.46-2.52 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.33 $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.25-5.28(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 5.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3 \mathrm{a}, 13 \mathrm{~b}} 7.6\right.$, 13b-H), 7.62-7.73 ($3 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}$ and $13-\mathrm{H}$), $7.83(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{8,9} 7.0, \mathrm{~J}_{8,10} 1.8,8-\mathrm{H}\right), 7.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,7} 9.2,7-\mathrm{H}\right), 8.00(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}_{6,7} 9.2,6-\mathrm{H}\right), 8.68-8.73(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 12-\mathrm{H}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 1778 (C=O); m/z (EI) $290\left(\mathrm{M}^{+}, 100 \%\right)$.

(\pm)-5-Bromo-3a,4,5,13b-tetrahydrochryseno[1,2-d][1,3]dioxol-2one 14

A mixture of the cyclic carbonate $13(0.170 \mathrm{~g}, 0.58 \mathrm{mmol}), \mathrm{N}$ BS ($0.105 \mathrm{~g}, 0.59 \mathrm{mmol}$) and $\operatorname{AIBN}(0.005 \mathrm{~g})$ in carbon tetra-
chloride ($25 \mathrm{~cm}^{3}$) was maintained at $60^{\circ} \mathrm{C}$ using a heat lamp under an atmosphere of nitrogen until a precipitate of succinimide formed (ca. 1 h). A ctivated charcoal (0.020 g) was added and the reaction mixture was stirred, filtered and evaporated to dryness to give a mixture of bromo carbonate diastereoisomers $14(0.174 \mathrm{~g}, 81 \%)$ as a light brown oil. The product 14 was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and used immediately in the next step without purification; $\delta_{\mathrm{H}} 2.30-2.39(1 \mathrm{H}, \mathrm{m}, 4-$ H), 3.01-3.09 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}^{\prime}$), 5.50-5.58 ($1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}$), 5.88 ($\left.1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{\text {3a, } 3 \text { 3a }} 7.6,13 \mathrm{~b}-\mathrm{H}\right), 6.05\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{4,5}=\mathrm{J}_{4,5} 3.2,5-\mathrm{H}\right.$), 7.60-7.73 ($3 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}, 13-\mathrm{H}$), $7.89-8.01$ ($3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$, $7-H, 8-H), 8.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{12,13} 8.3,12-\mathrm{H}\right), 8.77\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{10,11} 8.7\right.$, 11-H).

(\pm)-3a,13b-D ihydrochryseno[1,2-d][1,3]dioxolan-2-one 15

D ehydrobromination of the bromo carbonate $14(0.170 \mathrm{~g}, 0.46$ mmol) using the method previously described for compound 10 gave the title compound 15 ($0.126 \mathrm{~g}, 93 \%$). Purification by flash chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($30: 70$) and subsequent crystallization of the product provided cyclic carbonate $15, \mathrm{mp} 248-258^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ methanol) (Found: C, 78.90; H, 4.03. $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C 79.14; H, 4.19\%); $\delta_{\mathrm{H}} 5.58-5.61$ (1 H , ddd, J ${ }_{3 \mathrm{a}, 13 \mathrm{~b}} 8.8, \mathrm{~J}_{3 \mathrm{a}, 4} 3.3$, $\mathrm{J}_{3 \mathrm{a}, 5} 1.8,3 \mathrm{a}-\mathrm{H}$), $5.89(1 \mathrm{H}$, d, J J 3a,13b $8.8,13 \mathrm{~b}-\mathrm{H}$), 6.05 (1 H , dd, $\mathrm{J}_{4,5} 10.3, \mathrm{~J}_{4,3 \mathrm{a}} 3.2,4-\mathrm{H}$), $7.49\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{5,4} 10.6,5-\mathrm{H}\right.$), 7.59-7.64 (3 $\mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}, 13-\mathrm{H}), 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,69.3,7-\mathrm{H}), 7.85(1 \mathrm{H}$, dd, J $\left.{ }_{8,9} 8.0, J_{8,10} 1.8,8-H\right), 8.02\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{6,7} 9.3,6-\mathrm{H}\right), 8.62(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}_{12,13} 8.6,12-\mathrm{H}\right), 8.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{10,11} 8.6,11-\mathrm{H}\right) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 1796 (C=O); m/z (EI) $244\left(\mathrm{M}^{+}-\mathrm{CO}_{2}, 23 \%\right)$.

(\pm)-cis-1,2-D ihydroxy-1,2-dihydrochrysene 5

cis-D ihydrodiol 5 was obtained by treatment of cyclic carbonate $15(0.050 \mathrm{~g}, 0.17 \mathrm{mmol})$ with potassium carbonate (0.01 g) in THF ($2 \mathrm{~cm}^{3}$), methanol ($3 \mathrm{~cm}^{3}$) and water ($1 \mathrm{~cm}^{3}$) using the method described for hydrolysis of carbonate 11. Purification by PLC using CHCl_{3}-methanol (95:5) and crystallization gave pure cis-1,2-dihydroxy-1,2-dihydrochrysene 5 ($0.01 \mathrm{~g}, 24 \%$), colourless crystals, mp $245-246{ }^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ methanol) (Found: M^{+}, 262.09717. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$ requires M , 262.09937); m/z (EI) $262\left(\mathrm{M}^{+}, 1.5 \%\right), 244\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$. See Table 1 for ${ }^{1}$ NMR data.

(\pm)-cis-1,2-D ihydroxy-1,2,3,4-tetrahydrochrysene 12

A solution of 3,4-dihydrochrysene (0.178 g), osmium tetraoxide (0.217 g) in dry pyridine ($15 \mathrm{~cm}^{3}$) was stirred at room temperature for 30 min . Sodium hydrogen sulfite (0.300 g) and water (5 cm^{3}) were added, and the mixture was stirred for 1 h . Work-up provided colourless prisms, mp $227^{\circ} \mathrm{C}$ (acetone) (Found: C, 81.85; $\mathrm{H}, 6.1 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.8 ; \mathrm{H}, 6.1 \%$); ${ }^{1} \mathrm{H} \mathrm{N} \mathrm{M} \mathrm{R}$ data are shown in Table 1; m/z (EI) 264 (${ }^{+}, 60 \%$), 246 $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 60\right)$. A similar approach provided racemic cistetrahydrodiol 6.

(\pm)-cis-1,2-D iacetoxy-1,2,3,4-tetrahydrochrysene 16

A mixture of the cis-1,2-tetrahydrodiol 12 (0.132 g), acetic anhydride ($0.3 \mathrm{~cm}^{3}$) and dry pyridine ($1 \mathrm{~cm}^{3}$) was allowed to stand at room temperature in the dark for 18 h . Evaporation in vacuo gave a crystalline residue which was taken up in CHCl_{3} Standard work-up provided colourless crystals of diacetate 16 $(0.170 \mathrm{~g}, 98 \%)$ which were recrystallized from diethyl ether to give colourless leaflets, $\mathrm{mp} 218-219{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.8 ; \mathrm{H}, 5.8$. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 75.85 ; \mathrm{H}, 5.8 \%\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz},\left[C D_{3}\right]_{2} \mathrm{CO}-\right.$ $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 2.22\left(1 \mathrm{H}, \mathrm{m}, 3_{\mathrm{ax}}-\mathrm{H}\right), 2.85\left(1 \mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}\right), 3.15(1 \mathrm{H}$ $\left.\mathrm{m}, 4_{\mathrm{ax}}-\mathrm{H}\right), 3.45\left(1 \mathrm{H}, \mathrm{dt}, J_{4 \mathrm{eq}, 4 \mathrm{ax}} 17.2, J_{3 \mathrm{ax}, \mathrm{eq}}=J_{\text {3eq, } 4 \mathrm{ee}} 6.2,4_{\mathrm{eq}}-\mathrm{H}\right)$ $4.10(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.82\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 3.7,1-\mathrm{H}\right), 7.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ 8.1, J ${ }_{8,9} 8.2,8-\mathrm{H}$), $7.69\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{8,9} 8.2, \mathrm{~J}_{9,10} 8.4,9-\mathrm{H}\right), 7.78$ ($1 \mathrm{H}, \mathrm{d}_{\mathrm{d}} \mathrm{J}_{11,12} 8.4,12-\mathrm{H}$), 7.88 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5,6} 9.15,6-\mathrm{H}$), 7.98 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{7,8} 8.1, \mathrm{~J}_{7,9} 0.8,7-\mathrm{H}$), 8.05 ($1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{5,6} 9.2,5-\mathrm{H}$), 8.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{11,12} 8.8,11-\mathrm{H}$) and $8.42\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{10,9} 8.4,10-\mathrm{H}\right.$);
$\mathrm{m} / \mathrm{z}(\mathrm{EI}) 348\left(\mathrm{M}^{+}, 20 \%\right), 288\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{COOH}, 10\right), 246$ $\left(\mathrm{M}^{+}-60-\mathrm{CH}_{2} \mathrm{CO}, 50\right)$.

(\pm)-cis-1,2-D iacetoxy-4-bromo-1,2,3,4-tetrahydrochrysene 17a,

 17b \daggerA mixture of $\mathrm{CCl}_{4}\left(50 \mathrm{~cm}^{3}\right), \mathrm{N}$-bromosuccinimide (0.025 g), cis-1,2-tetrahydroacetate $\mathbf{1 6}(0.050 \mathrm{~g})$ and α, α^{\prime}-azoisobutyronitrile was maintained at $\sim 50^{\circ} \mathrm{C}$ with a heat lamp for 30 min while a stream of N_{2} was passed through the solution. The reaction mixture was cooled and filtered, and the CCl_{4} was removed under reduced pressure to yield colourless crystals (0.060 g , 98%). The product was shown to be a mixture of two isomeric bromides at C-4 in a ratio of 9:1 as detected by HPLC and NM R analysis. A portion of the above mixture was separated by HPLC on a DuPont Zorbax Sil column ($9.5 \times 250 \mathrm{~mm}$) using 6% EtOAc in hexane at a flow rate of $15 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ (detected at 300 nm) to give a major cis-1R*,25*-diacetoxy-4S*-bromo-1,2,3,4-tetrahydrochrysene 17a ($\mathrm{k}^{\prime}=5.17$) as colourless prisms, $\mathrm{mp} 132{ }^{\circ} \mathrm{C}$ (diethyl ether-light petroleum) (Found: $\mathrm{C}, 61.3 ; \mathrm{H}, 4.5 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{Br}$ requires $\mathrm{C}, 61.2 ; \mathrm{H}, 4.5 \%$); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 2.62\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{2,3 \mathrm{eq}}=\jmath_{\text {3eq, } 4} 3.8, \mathrm{~J}_{3 \mathrm{eq}, 3 \mathrm{ax}} 14.1,3_{\mathrm{eq}}-\mathrm{H}\right)$, 2.90 (1 H, ddd, $\mathrm{J}_{2,3 a \mathrm{ax}} 12.2, \mathrm{~J}_{3 \mathrm{axx}, 4} 3.7, \mathrm{~J}_{\text {3ax }, \text { 3eq }} 14.1,3_{\mathrm{ax}}-\mathrm{H}$), 5.90 $\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{1,2}=\mathrm{J}_{2,3 \text { eq }} 3.8, \mathrm{~J}_{2,3 \mathrm{ax}} 12.2,2-\mathrm{H}\right), 6.25\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{4,3 \mathrm{eq}} 3.8\right.$, $\mathrm{J}_{4,3 \mathrm{ax}} 3.7,4-\mathrm{H}$), $6.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 3.8,1-\mathrm{H}\right), 7.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{11,12} 8.5\right.$, $12-\mathrm{H}), 7.67(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 7.92(1 \mathrm{H}, \mathrm{br}$ d, J $7,88.0,7-$ H), 7.95 (1 H, d, J ${ }_{6,5} 9.2,6-H$), 8.15 (1 H , d, J ${ }_{5,6} 9.2,5-H$), 8.65 $\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{9,10} 7.9,10-\mathrm{H}\right)$ and $8.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{11,12} 8.5,11-\mathrm{H}\right)$ and a minor cis-1R*,2S*-diacetoxy-4R *-bromo-1,2,3,4-tetrahydrochrysene 17b ($k^{\prime}=5.67$), as colourless prisms, $m p 126^{\circ} \mathrm{C}$ (diethyl ether-light petroleum) (Found: $\mathrm{M}^{+}, 428.0449$ and 426.0467. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{Br}$ requires $\mathrm{M}, 428.0473$ and 426.0489); $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 2.91\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{2,3 \mathrm{ax}} 3.5, \mathrm{~J}_{3 \mathrm{ax}, 4} 7.0, \mathrm{~J}_{3 \mathrm{ax}, 3 \mathrm{eq}}\right.$ $15.3,3_{\mathrm{ax}}-\mathrm{H}$), 2.21 (1 H, ddd, $\mathrm{J}_{\text {3eq, } 4} 3.9, \mathrm{~J}_{2,3 \mathrm{seq}} 8.0, \mathrm{~J}_{\text {3ax,3eq }} 15.3$, $\left.3_{\text {eq }}-\mathrm{H}\right), 5.43\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}_{2,3 \mathrm{eq}} 8.0, \mathrm{~J}_{1,2}=\mathrm{J}_{2,3 \mathrm{ax}} 3.5,2-\mathrm{H}\right), 6.13(1 \mathrm{H}$, dd, J 4,3 eq $\left.3.9, J_{4,3 a x} 7.0,4-H\right), 6.24\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 3.5,1-\mathrm{H}\right), 7.55$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{11,12} 8.5,12-\mathrm{H}$), $7.70(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 7.95(2 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}$), 8.15 ($1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{5,6} 9.2,5-\mathrm{H}$), $8.65(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\mathrm{J}_{9,10} 7.9,10-\mathrm{H}$) and $8.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{11,12} 8.5,11-\mathrm{H}\right)$. Since both the isomers gave the expected dihydrodiol diacetate $\mathbf{1 8}$ by the following dehydrobromination, the isomeric mixture was used without purification.

(\pm)-cis-1,2-D ihydroxy-1,2-dihydrochrysene 5

A mixture of the above isomeric bromides 17a, 17b (0.05 g), sodium hydrogen carbonate (0.25 g), triethylamine ($0.10 \mathrm{~cm}^{3}$) and xylene ($75 \mathrm{~cm}^{3}$) was refluxed under stirring for 2 h . The mixture was filtered and the filtrate was evaporated to leave a yellow oil which was purified by H PLC on a D uPont Zorbax Sil column ($9.5 \times 250 \mathrm{~mm}$) using $1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at a flow rate of $12 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. Evaporation of the major fraction ($>95 \%$, $\mathrm{k}^{\prime}=5.33$) afforded the objective dihydrodiol diacetate 18 as colourless needles ($0.035 \mathrm{~g}, 83 \%$), mp $155-157^{\circ} \mathrm{C}$ (diethyl ether) (Found: C, 76.2; H, 5.3. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, 76.3; H,5.2\%); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOM}$ e), $2.15(3 \mathrm{H}, \mathrm{s}$, OCOM e), 5.80 ($1 \mathrm{H}, \mathrm{dd}_{1} \mathrm{~J}_{2,3} 3.9, \mathrm{~J}_{1,2} 4.8,2-\mathrm{H}$), $6.22\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,4}\right.$ $10.2, J_{2,3} 3.85,3-H$), $6.29\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 4.8,1-\mathrm{H}\right), 7.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{4,3}\right.$ 10.2, 4-H), 7.62 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 7.67 ($1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$), $7.69(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}_{11,12} 8.5,12-\mathrm{H}$), $7.82\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5,6} 9.3,6-\mathrm{H}\right), 7.80\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{7,8}\right.$ 9.0. J 7,9 1.0, $7-\mathrm{H}$), 8.09 ($1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{5,6} 9.3,5-\mathrm{H}$), 8.67 ($1 \mathrm{H},{\mathrm{d}, ~ \mathrm{~J}_{11,12}}$ 8.5, 11-H) and 8.69 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 9,10$ 8.0, 10-H); m/z (EI) 346 $\left(\mathrm{M}^{+}, 10 \%\right), 286\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{COOH}, 15\right)$ and $244\left(\mathrm{M}^{+}-60-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CO}, 100\right)$.

The cis-1,2-dihydrodiol diacetate $18\left(0.030 \mathrm{~g}\right.$ in $20 \mathrm{~cm}^{3}$ of NH_{3} saturated MeOH and $3 \mathrm{~cm}^{3}$ of THF, room temperature 10 h) was then hydrolysed to the free racemic dihydrodiol 5. Standard work-up and trituration with diethyl ether gave diol 5 as colourless prisms ($0.025 \mathrm{~g}, 94 \%$), mp $245-246^{\circ} \mathrm{C}$ (decomp.);

[^0]for ${ }^{1} \mathrm{H}$ NMR data, see Table 1 (Found: C, 82.4; H, 5.35. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 82.4 ; \mathrm{H}, 5.4 \%$); $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 262$ ($\mathrm{M}^{+}, 65 \%$), $244\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 40\right) 231\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{OH}, 30\right), 216$ (100); $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 220\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 66\right.$ 100).

(-)-(1R ,2R)-trans-2-B romo-1-(ethoxycarbonylacetoxy)-1,2,3,4-tetrahydrochrysene 20

A solution of optically pure (+)-(1R,2R)-trans-2-bromo-1-hydroxy-1,2,3,4-tetrahydrochrysene $19\left\{0.300 \mathrm{~g}, 92 \mathrm{mmol},[a]_{\mathrm{D}}\right.$ $+27\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)$, resolved as the bromoM TPA ester\} in dry diethyl ether ($20 \mathrm{~cm}^{3}$) was added to a stirred solution of ethyl malonyl chloride ($0.11 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$) and pyridine ($0.5 \mathrm{~cm}^{3}$) in dry diethyl ether ($40 \mathrm{~cm}^{3}$) under nitrogen at room temperature. The mixture was refluxed for 1 h and concentrated under reduced pressure to yield crude trans-bromo ester 20 (0.397 g , 98%). A portion of the crude product (0.05 g) was purified by PLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($50: 50$); mp $106{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane); $[a]_{\mathrm{D}}-32.3$ (c 1.0, CHCl_{3}) (Found: C , 62.35; H, 4.6. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrO}_{4}$ requires C, 62.7; H, 4.8\%); $\delta_{\mathrm{H}} 1.24$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.45-2.59 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.60-2.63 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), 3.38-3.42 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $3.44(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{2}\right), 4.41-4.21\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.62-4.64(1$ H, m, 2-H), 6.37 ($1 \mathrm{H}, \mathrm{d}_{\mathrm{j}} \mathrm{J}_{1,2} 4,1-\mathrm{H}$), $7.54\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{11,12} 8.7\right.$, 12-H), 7.58-7.69 ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}$), 7.83 ($1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{5,6} 9.3,6-$ H), 7.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{7,8} 7.5,7-\mathrm{H}$), 7.97 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5,6} 9,3,5-\mathrm{H}$), $8.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{11,12} 8.7,11-\mathrm{H}\right)$ and $8.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{9,10} 9.0,10-\right.$ $\mathrm{H}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1752$ and 1724 ($\mathrm{C}=0$); m/z (EI) 442 [$\left.\mathrm{M}\left({ }^{81} \mathrm{Br}\right)^{+}, 8 \%\right]$ and $440\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)^{+}, 8\right]$.

(E)/(Z)-2-(E thoxycarbonylmethylidene)-3a,4,5,13b-tetrahydro-chryseno[1,2-d][1,3]dioxole 21a and 21b

A solution of crude trans-bromo ester $20(0.390 \mathrm{~g}, 0.88 \mathrm{mmol}$, $\left.[a]_{\mathrm{D}}-32.3\right)$ in dry THF $\left(25 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of sodium hydride (60% dispersion in oil, 10 mmol) in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$. Stirring was continued for 12 h at room temperature. Water ($1 \mathrm{~cm}^{3}$) was added to destroy excess sodium hydride, and the reaction mixture was filtered through a pad of $\mathrm{M} \mathrm{gSO}_{4}$. The organic filtrate was concentrated under reduced pressure to provide as a blue-green oil 21a and $\mathbf{2 1 b}(0.340 \mathrm{~g}, 97 \%)$. The ${ }^{1} \mathrm{H}$ N M R spectrum indicated the presence of a mixture of E / Z isomers which decomposed during attempted purification by PLC using silica gel. The E/Z isomers were distinguishable from both the vinyl signals ($\delta 4.44$ and 4.49) and the benzylic signals ($\delta 5.76, \mathrm{~J}_{3 \mathrm{a}, 13 \mathrm{~b}} 7.0,5.96, \mathrm{~J} 3 \mathrm{3a}, 13 \mathrm{~b}$ 7.2); the crude product mixture was used directly in the next step.

(1R ,2S)-2-(E thoxycarbonylacetoxy)-1-hydrox y-1,2,3,4-tetrahydrochrysene 22a and (1R,2S)-1-(ethoxycarbonylacetoxy)-2-hydroxy-1,2,3,4-tetrahydrochrysene 22b

Dilute hydrochloric acid ($1 \mathrm{~m}, 10 \mathrm{~cm}^{3}$) was added to a solution of the ketene acetal mixture $\mathbf{2 1 a}$ and $\mathbf{2 1 b}(0.310 \mathrm{~g}, 0.86 \mathrm{mmol})$ in THF ($45 \mathrm{~cm}^{3}$), and the resulting mixture was stirred at room temperature for 30 min . This gave a mixture of monoethyl malonyl esters 22a and 22b of the enantiopure diol. Purification by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and crystallization gave a mixture of 22a and 22b in a ratio of (29:71) (0.246 g , 76%), light brown crystals, $\mathrm{mp} 95-106^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ pentane); $[a]_{\mathrm{D}}-6.9$ (c $0.30, \mathrm{CHCl}_{3}$) (Found: $\mathrm{M}^{+}, 378.14634$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{M}, 378.14671$); δ_{H} 1.12-1.26 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}{ }^{\mathrm{a}}$ and $\left.\mathrm{CH}_{3}{ }^{\mathrm{b}}\right), 2.10-2.19\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\mathrm{a}}\right.$ and $\left.3-\mathrm{H}^{\mathrm{b}}\right), 3.11-3.53(\mathrm{OH}$, $\mathrm{m}, \mathrm{OCCH}_{2}{ }^{\mathrm{a}}, \mathrm{OCCH}_{2}{ }^{\mathrm{b}}, 4-\mathrm{H}^{\mathrm{a}}$ and $\left.4-\mathrm{H}^{\mathrm{b}}\right), 4.07-4.23(5 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2}{ }^{\mathrm{a}} \mathrm{CH}_{3}, \mathrm{OCH}_{2}{ }^{\mathrm{b}} \mathrm{CH}_{3}$ and $\left.2-\mathrm{H}^{\mathrm{b}}\right), 5.03\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 3.5,1-\mathrm{H}^{\mathrm{a}}\right)$, 5.35-5.38 (1 H, m, 2-H ${ }^{\mathrm{a}}$), $6.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 3.5,1-\mathrm{H}^{\mathrm{b}}\right.$), $7.52-7.91$ ($12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}^{\mathrm{a}}$ and $\mathrm{Ar}-\mathrm{H}^{\mathrm{b}}$) and 8.51-8.64 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}^{\mathrm{a}}$ and Ar-H ${ }^{\mathrm{b}}$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3485(\mathrm{OH}), 1725(\mathrm{C}=0)$; m/z (EI) 378 ($\mathrm{M}^{+}, 21 \%$) and $246\left(\mathrm{M}^{+}-\mathrm{HCO}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}, 100\right)$.
(-)-(1R,2S)-cis-1,2-D ihydroxy-1,2,3,4-tetrahydrochrysene 12
The monoethyl malonyl ester mixture 22a, 22b ($0.240 \mathrm{~g}, 0.63$
mmol, $[\alpha]_{\mathrm{D}}-6.9$) was dissolved in THF ($20 \mathrm{~cm}^{3}$) and methanol $\left(5 \mathrm{~cm}^{3}\right)$. Triethylamine $\left(2 \mathrm{~cm}^{3}\right)$ was added with stirring over 10 min , and the solution was left for 14 h at room temperature. M ost of the solvent was removed in vacuo, and $\mathrm{CHCl}_{3}\left(25 \mathrm{~cm}^{3}\right)$ was added. Standard work-up and purification by PLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-methanol (90:10), provided cis-tetrahydrodiol 12 ($0.164 \mathrm{~g}, 97 \%$), mp $169^{\circ} \mathrm{C}$ (from CHCl_{3}-methanol); $[a]_{\mathrm{D}}-29$ (c 0.4, THF) (lit., ${ }^{10} \mathrm{mp} 166-168^{\circ} \mathrm{C},[a]_{\mathrm{D}}-26$).

(+)-(3aS,13bR)-3a,13b-D ihydrochryseno[1,2-d][1,3]dioxol-2one 15

The bromination-dehydrobromination sequence used in the conversion of racemic compound 13 to carbonates 14 and 15 , was applied to the conversion of the ($3 \mathrm{aS}, 13 \mathrm{bR}$)-enantiomer of cyclic tetrahydrocarbonate $13\left(0.150 \mathrm{~g}, 0.51 \mathrm{mmol},[a]_{\mathrm{D}}+160\right.$, TH F) to produce the (3aS,13bR)-dihydrocarbonate 15. Crystallization provided a pure sample of compound $15(0.117 \mathrm{~g}$, 79%), white crystals, $\mathrm{mp} 248-258{ }^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ methanol); $[a]_{\mathrm{D}}+237$ (c 0.52 , pyridine).

(+)-cis-(1R ,2S)-1,2-D ihydroxy-1,2-dihydrochrysene 5

U sing identical conditions to those used for the hydrolysis of racemic compounds, the (+)-cyclic carbonate 15 ($0.110 \mathrm{~g}, 0.38$ mmol, $[a]_{\mathrm{D}}+237$) was hydrolysed. Purification by PLC using CHCl_{3}-methanol ($95: 5$) and crystallization provided pure (+)(1 R, 2S)-1,2-dihydroxy-1,2-dihydrochrysene 5 ($0.022 \mathrm{~g}, 22 \%$), colourless crystals, $\mathrm{mp} 193-196{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-methanol); $[a]_{\mathrm{D}}+74$ (c 0.50, THF). See Table 1 for ${ }^{1} \mathrm{H}$ N M R data.

Acknowledgements

This work was supported by the BBSRC (NDS), the Queen's University of Belfast (R.A.) and US Public Health Service grant GM 29909 from the N ational Institute of G eneral M edical Sciences (D. T. G.). S. M . R . was supported by predoctoral fellowships from the C enter for Biocatalysis and Bioprocessing at the U niversity of Iowa and training grant T32G M 08365 from the N ational Institute of G eneral M edical Sciences, US PH S.

R eferences

1 W. K ern, H elv. Chim. A cta, 1947, 30, 1595.
2 M . N ordqvist, D. R. Thakker, K. P. Vyas, H. Y agi, W. L evin, D. E. Ryan, P. E. Thomas, A. H. Conney and D. M. Jerina, M ol. P harmacol., 1981, 19, 168.
3 J. Jacob, J. D oehmer, G. Grimmer, V. Soballa, G. R aab, A. Seidel and H. Greim, Polycyclic A romatic Compounds, 1996, 10, 1.
4 R . L. Chang, W. Levin, A . W. Wood, H. Yagi, M. Tada, K. P. Tada, K. P. Vyas, D. M. Jerina and A. H. Conney, C ancer Res., 1983, 43, 192.

5 K. P. Vyas, W. Levin, H. Yagi, D. R. Thakker, D. E. Ryan, P. E. Thomas, A. H. Conney and D. M. Jerina, M ol. Pharmacol., 1982, 22, 182.
6 A. W. Wood, R. L. Chang, W. Levin, D. E. Ryan, P. E. Thomas, H. D. M ah, J. M. K arle, H. Y agi, D. M . Jerina and A . H. Conney, C ancer Res., 1979, 39, 4069.
7 K. P. Vyas, H. Yagi, W. Levin, A. H. Conney and D. M. Jerina, Biochem. Biophys. Res. Commun., 1981, 98, 961.
8 K. P. Vyas, H. Yagi, W. Levin, A. H. Conney and D. M. Jerina, B iochem. Biophys. Res. Commun., 1981, 101, 326.
9 D. R. Boyd, M. G. Burnett and R. M. E. G reene, J. Chem. Soc., Perkin Trans. 1, 1983, 595.
10 D. R. Boyd and R. M. E. Greene, J. Chem. Soc., Perkin Trans. 1, 1982, 1535.
11 J. M. K arle, H. D. M ah, D. M. Jerina and H. Yagi, Tetrahedron L ett., 1977, 4021.
12 H. Yagi, K. P. Vyas, M. Tada, D. R. Thakker and D. M. Jerina, J. Org. C hem., 1982, 47, 1110.

13 A. A. K han, R.-F. Wang, W.-W. Cao, W. Franklin and C. E. Cerniglia, Int. J. Sys. B acteriol., 1996, 46, 466.
14 D. T. G ibson, R . L. Roberts, M . C. Wells and V. M . K obal, Biochem. Biophys. Res. Commun., 1973, 50, 211.
15 A. M . Jeffrey, H. J. C. Yeh, D. M. Jerina, T. R. Patel, J. F. D avey and D. T. G ibson, B iochemistry, 1975, 14, 575.

16 D. R. Boyd, R. A. S. McM ordie, H. P. Porter, H. Dalton, R. O Jenkins and O. H owarth, J. Chem. Soc., Chem. Commun., 1987, 1722.

17 D. M. Jerina, H. Selander, H. Y agi, M. C. Wells, J. F. Davey, V. M ahadevan and D. T. G ibson, J. Am. Chem. Soc., 1976, 98, 5988.

18 M. N. A khtar, D. R. Boyd, N. J. Thompson, M. K oreeda, D. T. Gibson, V. M ahadevan and D. M. Jerina, J. Chem. Soc., Perkin Trans. 1, 1975, 2506.
19 M. K oreeda, M. N. A khtar, D. R. Boyd, J. D. Neill and D. T. G ibson, J. Org. Chem., 1978, 43, 1023.
20 D. T. Gibson, V. M ahadevan, D. M . Jerina, H. Yagi and H. J. C. Yeh, Science, 1975, 189, 295.
21 D. M. Jerina, P. J. van Bladeren, H. Yagi, D. T. Gibson, V. M ahadevan, A. S. N eese, M . K oreeda, N. D. Sharma and D. R. Boyd, J. Org. Chem., 1984, 49, 3621.
22 M. A. Heitcamp, J. P. Freeman, D. W. M iller and C. E. Cerniglia, A ppl. E nviron. M icrobiol., 1988, 54, 2556.
23 C. E. Cerniglia, B iodegradation, 1992, 3, 351.

24 G. Caldini, G. Cenci, R. M aneti and G. M orozzi, Appl. M icrobiol. B iotechnol., 1995, 44, 225.
25 U. Walter, M. Beyer, J. K lein and H.-J. Rehm, A ppl. M icrobiol. Biotechnol., 1991, 34, 671.
26 S. M. Resnick, D. S. Torok and D. T. Gibson, J. Org. Chem., 1995, 60, 3546.
27 D. R. Boyd, N. D. Sharma, R. Boyle, R. A. S. M cM ordie, J. Chima and H. D alton, Tetrahedron L ett., 1992, 33, 1241.
28 N. Harada and K. Nakanishi, Circular Dichroic Spectroscopy, U niversity Science Books, M ill Valley, CA, 1983.
29 E. J. Corey and J. D as, Tetrahedron Lett., 1982, 23, 4217.
30 D. L. Whalen, A. M. Ross, H. Y agi, J. M. K arle and D. M. Jerina, J. A m. Chem. Soc., 1978, 100, 5218.

Paper 6/06686K
Received 10th O ctober 1996 A ccepted 11th February 1997

[^0]: \dagger In compound 17, cis refers to the relative stereochemistry of the two acetoxy substituents.

